Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 114: 287-298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648007

RESUMO

The circadian system is an evolutionarily adaptive system that synchronizes biological and physiological activities within the body to the 24 h oscillations on Earth. At the molecular level, circadian clock proteins are transcriptional factors that regulate the rhythmic expression of genes involved in numerous physiological processes such as sleep, cognition, mood, and immune function. Environmental and genetic disruption of the circadian clock can lead to pathology. For example, global deletion of the circadian clock gene Rev-erbα (RKO) leads to hyperlocomotion, increased anxiety-like behaviors, and cognitive impairments in male mice; however, the mechanisms underlying behavioral changes remain unclear. Here we hypothesized that RKO alters microglia function leading to neuroinflammation and altered mood and cognition, and that microglia depletion can resolve neuroinflammation and restore behavior. We show that microglia depletion (CSF1R inhibitor, PLX5622) in 8-month-old RKO mice ameliorated hyperactivity, memory impairments, and anxiety/risky-like behaviors. RKO mice exhibited striking increases in expression of pro-inflammatory cytokines (e.g., IL-1ß and IL-6). Surprisingly, these increases were only fully reversed by microglia depletion in the male but not female RKO hippocampus. In contrast, male RKO mice showed greater alterations in microglial morphology and phagocytic activity than females. In both sexes, microglia depletion reduced microglial branching and decreased CD68 production without altering astrogliosis. Taken together, we show that male and female RKO mice exhibit unique perturbations to the neuroimmune system, but microglia depletion is effective at rescuing aspects of behavioral changes in both sexes. These results demonstrate that microglia are involved in Rev-erbα-mediated changes in behavior and neuroinflammation.


Assuntos
Disfunção Cognitiva , Microglia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Feminino , Masculino , Camundongos , Ansiedade , Ritmo Circadiano/fisiologia , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neuroinflamatórias , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...